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Abstract	
Data	trending	and	monitoring	are	crucial	in	the	spacecraft	operations	for	maintaining	the	spacecraft	health	
and	safety	and	for	evaluating	the	system	performance	and	accuracy.	The	existing	trend	and	data	monitoring	
approaches	are	 insufficient	for	time	dependent	datasets.	The	monitoring	of	these	datasets	would	be	very	
difficult	if	not	possible	without	a	time	dependent	trend	being	established,	and	the	determination	if	a	time	
dependent	dataset	at	a	given	 time	 is	normal	or	 in	an	error	 state	 requires	 significant	engineering	analysis	
efforts.	 This	 talk	 presents	 a	 Satellite	Data	 Trending	 and	Monitoring	 Toolkit(SDTMT),	which	 implements	 a	
machine	 learning	 system	 for	 an	 automated	 and	 integrated	 trending	 and	 monitoring	 of	 time	 dependent	
datasets	exhibiting	the	diurnal	characteristics.		Satellite	data	trending	and	monitoring	are	a	natural	fit	to	the	
operational	 concepts	 of	 a	 machine	 learning	 system.	 The	 data	 training	 in	 the	 machine	 learning	 system	
obtains	 the	 time	dependent	 trend	 for	datasets	 represented	by	 the	 time	 function	and	standard	deviation.	
The	 real-time	 or	 near	 real-time	 data	 monitoring	 determines	 if	 a	 data	 point	 is	 consistent	 with	 its	 time	
dependent	 trend.	 The	 potential	 anomalies	 can	 be	 detected	 in	 real	 time,	 which	 creates	 the	 enhanced	
situational	 awareness	 for	 autonomous	 spacecraft	operations.	 The	adaptive	 trending	and	 limit	monitoring	
algorithm	and	 the	neural	 networks	 are	 implemented	 in	 SDTMT	as	 the	machine	 learning	algorithms.	 	 The	
machine	 learning	 approach	 is	 systematic,	 autonomous	 and	 adaptive.	 The	 application	 of	 the	 machine	
learning	system	to	Geostationary	Environment	Operational	Satellite(GOES)	Imager	data	processing	process	
is	presented.	It	shows	that	the	machine	learning	system	enables	the	real-time	monitoring	of	the	instrument	
data	calibration	process	that	would	have	been	impossible	with	the	standard	statistical	trending	approach.		
SDTMT	 can	 have	 many	 potential	 applications	 from	 the	 spacecraft	 health	 and	 safety	 to	 the	 science	
instrument	 data	 processing	 process,	 and	 it	 represents	 a	 significant	 advance	 toward	 an	 autonomous	
spacecraft	operations.	
	

1. Introduction	
The	spacecraft	operation	for	maintaining	the	satellite	health,	safety,	performance	and	accuracy	involves	
data	trending,	data	monitoring,	and	engineering	analysis	processes.		The	data	trending	is	a	data	analysis	
process	 to	 determine	 a	 true	 measure	 of	 a	 dataset	 that	 is	 statistically	 distinguished	 from	 random	
behavior.	The	statistical	approach	has	been	a	standard	to	the	data	trending,	which	the	trend	of	a	dataset	
is	characterized	by	its	statistical	properties,	such	as	the	mean	and	standard	deviation,	for	a	given	period.	
The	data	monitoring	is	performed	in	real-time	by	spacecraft	telemetry	and	command	system	(TCS);	the	
value	of	a	data	point	is	generally	compared	with	a	set	of	pre-defined	and	static	limits	to	determine	if	it	is	
normal,	 out	 of	 range,	 or	 in	 error	 state.	 The	 engineering	 analysis	 involves	 the	 targeted	 review	 of	 the	
specific	 dataset	 to	 identify,	 characterize,	 comprehend,	 and	workaround	 an	 anomaly	 or	 a	 failure.	 The	
engineering	 analysis	 is	 generally	 a	 tedious	 manual	 process	 performed	 by	 engineers.	 The	 spacecraft	
operations	 have	 faced	 growing	 challenges	 from	 the	 new	 missions	 with	 more	 sophisticated	 onboard	
instruments	and	 increased	data	volume.	For	example,	 the	 Imager	on	current	NOAA	GOES	satellite	has	
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only	16	detectors,	while	the	number	of	detectors	for	similar	instrument	for	the	new	GOES-R	mission	has	
increased	 to	 thousands.	The	existing	operational	concept	 for	maintaining	 the	 instrument	 to	ensure	 its	
performance	and	accuracy	is	no-longer	feasible	for	the	new	missions.	

The	focus	of	this	paper	is	to	develop	and	implement	a	machine	learning	approach	for	an	automated	and	
integrated	 approach	 to	 the	 data	 trending,	 monitoring,	 and	 engineering	 analysis	 for	 spacecraft	
operations.	A	machine	learning	system[1]	consists	of	data	models	or	algorithms	that	can	learn	from	and	
make	prediction	on	data.	It	generally	has	two	stages;	the	data	training	stages	to	train	a	data	model	with	
a	 subset	of	data	and	 the	 stage	 to	predict	 the	expect	behavior	 for	a	dataset	based	on	 the	outcome	of	
data	 training	 stage.	 Instead	of	 the	 traditional	 statistical	data	 trending,	 the	machine	 learning	approach	
performs	the	time	dependent	trending,	and	most	of	spacecraft	datasets	are	time	dependent.	The	time	
dependent	trend	of	a	dataset	also	creates	a	dynamic	limit	to	be	used	in	the	data	monitoring,	which	has	
much	 tighter	 data	 bound	 than	 the	 traditional	 static	 limit.	 The	 dynamic	 limit	 of	 dataset	 enables	 the	
potential	anomalies	to	be	identified	and	characterized	in	real	or	near	time,	thus	automates	some	of	the	
engineering	analysis	process.	 	 	This	approach	is	predictive	 in	the	short	term	that	enables	the	real	time	
data	monitoring	and	automated	anomaly	detection.	It	is	also	adaptive	over	the	long	term;	the	seasonal	
or	 long-term	 changes	 to	 datasets	 are	 captured	 automatically	 through	 the	 data	 retraining,	 and	 the	
threshold	 of	 data	 bound	 is	 determined	 by	 the	 noise	 level	 in	 datasets.	 As	 the	 system	 performance	
degrades,	 the	 noise	 level	 increases	 so	 that	 the	 data	 bound	 increases.	 This	 approach	 could	 have	
potentially	 wide	 range	 applications,	 which	 include	 the	 trending	 and	 monitoring	 of	 the	 spacecraft	
telemetry	for	health	and	safety	and	instrument	data	processing	status.	

The	situational	awareness	is	the	ability	of	a	system	to	perceive,	comprehend,	and	make	prediction	of	the	
data	in	its	environment,	thus,	potential	anomalies	that	deviates	from	the	predicted	behaviors	could	be	
automatically	 detected.	 The	 situational	 awareness	 of	 a	 system	 is	 crucial	 for	 a	 autonomic	 ground	
system[2],	as	 it	provides	actionable	data	or	 information	for	an	intelligent	decision	system	or	engineers	
to	respond	any	potential	problem	accordingly.	The	machine	 learning	presented	here	for	data	trending	
and	 monitoring	 provides	 a	 systematic	 approach	 for	 creating	 situational	 awareness.	 Once	 a	 machine	
learning	 system	 is	 setup	and	goes	 through	 the	 initial	 training	 to	establish	 the	data	pattern	 in	 its	 data	
model,	no	further	intervention	is	needed	so	that	the	data	trending	and	monitoring	become	autonomous.	
The	 system	 will	 retrain	 itself	 with	 new	 datasets	 periodically	 to	 capture	 the	 long	 term	 or	 seasonal	
changes,	 and	 the	 data	 monitoring	 is	 using	 the	 most	 recent	 data	 training	 results.	 Anomalies	 can	 be	
detected	 automatically	 in	 real-time	 for	 engineers	 or	 an	 intelligent	 decision	 system	 for	 appropriate	
actions.	 A	 system	with	 the	 situation	 awareness	 allows	 engineer	 to	 concentrate	 on	 the	 datasets	 with	
potential	problems	to	enable	a	much	more	proactive	operations.	Early	detections	of	potential	anomalies	
minimize	their	impact	to	spacecraft	operations.	

The	multi-layer	feed-forward	and	back-propagate	neural	networks[3]	are	implemented	as	the	machine	
learning	algorithm.	The	data	training	algorithm	implemented	with	the	neural	networks	 is	shown	to	be	
systematic,	accurate,	adaptive,	and	efficient.	The	machine	learning	system	presented	here	is	similar	to	
the	 Adaptive	 Trending	 and	 Limit	 Monitoring	 Algorithm	 (ATLMA)[4],	 in	 which	 the	 time	 function	 is	
expressed	as	a	Fourier	expansion.	The	 least	square	 fitting	procedure	 is	used	 in	data	 training	 to	obtain	
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the	coefficients	in	a	Fourier	expansion.	The	Fourier	expansions	obtained	from	the	least	square	fitting	are	
used	 in	data	monitoring.	Using	the	Fourier	expansion	for	a	time	dependent	dataset	has	 its	 limitations;	
Fourier	 expansions	 provide	 good	 descriptions	 to	 a	 limit	 set	 of	 data	 patterns,	 in	 which	 the	 long	
wavelength	 components	 in	 a	 Fourier	 expansion	 dominate.	 The	 neural	 network	 implemented	 in	 the	
machine	learning	system	is	much	more	adaptive	to	different	data	patterns.	It	has	been	shown	that	the	
neural	networks	with	two	hidden	layers	can	be	used	to	describe	an	arbitrary	functions[5].	

This	paper	is	organized	as	the	following.	Section	2	provides	a	mathematical	definition	for	data	trending	
and	 monitoring	 of	 time	 dependent	 datasets.	 Section	 3	 discusses	 the	 data	 training	 approach	 in	 the	
machine	learning	system,	which	includes	two	training	stages	that	follow	very	different	training	strategies.	
The	neural	 network	 implementation	 is	 also	discussed	 in	 Section	3.	 Section	4	 shows	how	 the	machine	
learning	system	is	applied	to	GOES	imager	calibration	process.	Section	5	provides	a	brief	discussions	on	
the	 software	 implementation	of	 the	machine	 learning	 system	and	general	operational	 concepts	when	
the	software	is	integrated	into	a	ground	system.	Finally,	the	summary	is	provided	in	Section	6.	

2. Trending	and	Monitoring	Time	Dependent	Datasets	
The	 trending	 for	 time	 dependent	 datasets	 extends	 the	 standard	 statistical	 trending	 approach.	 A	 time	
dependent	 trend	 for	 a	 dataset 𝑑 𝑡# 	is	 represented	 by	 a	 time	 dependent	 function	𝑓 𝑡 	for	 its	 true	
measure	at	a	given	time	t	and	the	standard	deviation	𝜎& 	for	its	random	behavior:		

																																																									𝜎& =
(
)

𝑑 𝑡# − 𝑓 𝑡#
+)

#,( .																																																								[1]	

The	 function	 f(t)	 is	 finite,	 however,	 it	 may	 not	 be	 continuous.	 The	 value	 of	 a	 data	 point	 during	 the	
trending	period	should	be	within	the	range	

𝑓(𝑡#) − 𝑑 𝑡# < 𝑁𝜎& 																																																														[2]	

where	the	factor	N	 is	an	 integer	defined	by	users.	Once	the	factor	N	 is	set,	 it	does	not	change	for	the	
lifetime	of	a	system	that	generates	the	dataset.	The	valid	data	range	in	Eq.	2	is	determined	by	the	noise	
level,	which	 could	become	 larger	 if	 the	 system	performance	degrades.	 	 If	 a	data	point	with	 the	value	
outside	 the	 range	 defined	 in	 Eq.	 2,	 it	 is	 defined	 as	 an	 outlier	 indicating	 a	 potential	 anomaly	 for	 the	
corresponding	system.		

The	data	training	in	a	machine	learning	system	is	to	find	a	time	dependent	function	f(t)	so	that	the	error	
function	

𝑒 = (
+

𝑑 𝑡# − 𝑓 𝑡#
+

# 																																																													[3]	

is	 minimum.	 For	 the	 special	 case	 of	 a	 constant	 function	 f(t),	 it	 can	 be	 shown	 that	 the	 function	 f(t)		
becomes	the	mean	value	of	a	dataset	 𝑑 𝑡# ,	and	𝜎& 	becomes	the	standard	deviation	in	the	statistical	
calculation.	 Therefore,	 the	 standard	 statistical	 approach	 can	 be	 regarded	 as	 a	 special	 case	 for	 the	
trending	of	time	dependent	datasets.	
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3. Data	Training	Approach	in	the	Machine	Learning	System	
An	effective	data	training	approach	for	data	trending	should	meet	the	following	requirements:	

• It	should	be	systematic	for	datasets	with	arbitrary	scales	and	data	patterns.		
• It	 should	 be	 accurate	 to	 capture	 the	 complexity	 of	 data	 patterns	 so	 that	 the	 data-training	

outcome	is	close	to	its	true	time	dependent	trend	for	a	dataset.	
• It	should	be	adaptive	to	the	long-term	changes	of	a	dataset.	
• It	should	also	be	efficient	to	minimize	the	impact	on	the	computing	resources.	

Figure	1	shows	the	data	
flow	 of	 the	 data	
training	 in	 a	 machine	
learning	 system	 for	 the	
spacecraft	 data	
trending	 and	
monitoring.	 The	 real-
time	data	represent	the	

telemetry	 data	 from	
the	 spacecraft	 that	
have	been	de-commutated	by	the	ground	system,	the	short	term	trend	generated	by	TCS	or	a	trending	
tool,	 and	 the	 intermediate	 data	 generated	 in	 a	 science	 instrument	 data	 processing	 system.	 The	 data	
archive	 in	 Figure	 1	 is	 generally	 part	 of	 a	 spacecraft	 ground	 system	 and	 ingest	 the	 real	 time	 data	 for	
either	short	or	long	term	storage.		The	current	and	previous	states	in	Figure	1	are	represented	by	state	
variables,	and	a	set	of	state	variables	is	defined	as	a	complete	and	sufficient	representation	of	machine	
learning	algorithm	to	characterize	the	time	dependent	trend 𝑓 𝑡 , 𝜎& .	State	variables	can	be	archived	
and	 retrieved	 to	 reconstruct	 the	 time	 dependent	 trend,	 which	 are	 essential	 for	 the	 software	
implementation	of	a	machine	 learning	 system.	During	 the	normal	operations,	 the	data	 training	 inputs	
the	dataset	from	a	data	archive	and	state	variables	from	the	previous	training	period	to	generate	new	
state	 variables.	 The	 data	 monitoring	 constructs	 the	 time	 dependent	 trend	 𝑓 𝑡 , 𝜎& from	 the	 most	
recent	 state	 variables,	 and	 compares	 the	 incoming	 real-time	 data	 with	 the	 time	 dependent	 trend	
𝑓 𝑡 , 𝜎& 	to	determine	if	the	value	of	a	data	point	is	within	the	bound	defined	by	Eq.	2.		

Figure	1	Data	Training	Approach	



32st	Space	Symposium,	Technical	Track,	Colorado	Springs,	Colorado,	United	States	of	America	
Presented	on	April	11-12,	2016	

Copyright	©	2016	by	ASRC	Technical	Services	All	rights	reserved.		 Page	5	of	10	
5	5	

	

The	 data	 training	 for	 the	machine	 learning	
system	 has	 two	 phases:	 the	 initial	 training	
and	retraining	phases	corresponding	to	the	
software	 deployment	 and	 operational	
phases.	When	a	machine	learning	system	is	
deployed	 into	 an	operational	 environment,	
the	 system	 has	 not	 prior	 knowledge	 of	
patterns	 of	 datasets.	 The	 data	 training	 in	
this	 phase	 is	 to	 establish	 the	 structure	 of	
the	machine-learning	algorithm	to	capture	the	complexity	of	expected	patterns	of	datasets	based	on	the	
system	performance	 requirements.	Once	 the	 structure	 of	 a	machine-learning	 algorithm	 is	 established	
during	 the	 initial	 training,	 it	 remains	 unchanged.	 The	 data	 retraining	 happens	 during	 the	 operational	
phase	to	capture	the	seasonal	or	 long-term	changes	to	data	patterns.	The	machine	 learning	system	in	
this	phase	has	the	prior	knowledge	of	datasets.	The	previous	state	variables	shown	in	Figure	1	are	used	
as	 the	 starting	 point	 for	 the	 retraining,	 and	 the	 difference	 between	 the	 retraining	 output	 and	 the	
previous	 state	 variables	 are	 expected	 to	 be	 small.	 Thus,	 the	 computing	 resource	 needed	 for	 data	
retraining	is	much	less	than	that	in	the	initial	data-training	phase,	and	this	makes	the	data	training	more	
efficient	during	the	normal	operations.		

The	multi-layer	 feed-forward	 and	 back	 propagate	 neural	 networks	 are	 implemented	 for	 the	machine	
learning	algorithm,	which	has	been	proven	 to	be	much	more	adaptive	 to	different	data	patterns.	The	
network	 structure	 for	 the	 data	 trending	 and	monitoring	 is	 shown	 in	 Figure	 2.	 There	 are	 two	 hidden	
layers	 in	 the	 network	 structure.	 Both	 input	 and	 output	 layers	 contain	 only	 single	 node,	 which	
corresponds	to	the	input	time	t	and	the	output	function	F(t).	The	structure	of	a	network	with	two	hidden	
layers	 in	Figure	2	can	be	 represented	by	an	 integer	array	 1, 𝑛(, 𝑛+, 1 	with	𝑛(	and	𝑛+	representing	 the	
number	of	neurons	at	the	hidden	layer	1	and	2	respectively.	The	blue	nodes	in	Figure	2	corresponds	the	
network	 nodes,	 and	 the	 green	 nodes	 represent	 the	 bias	 nodes	 in	 a	 neural	 network.	 Thus,	 the	 data	
training	 for	 the	 network	 structure	 in	 Figure	 2	 becomes	 a	 curve	 fitting	 problem,	 and	 there	 have	 been	
extensive	 studies	 in	 the	 literature	 using	 neural	 network	 to	 do	 the	 curve	 fittings[6]	 in	 different	
applications.		

The	data	training	for	the	multi-layered	neural	network	is	to	minimize	the	error	function	defined	in	Eq.	3,	
which	 is	generally	a	nonlinear	 least	squared	fitting	problem.	During	the	 initial	data-training	phase,	 the	
Levenburg-Marquardt	 (LM)	 back-propagation	 algorithm[7]	 is	 implemented	 in	 the	 data	 training	 at	 the	
initial	phase,	which	has	been	proven	 to	be	accurate	 in	 capturing	 the	complexity	of	 the	data	patterns.	
However,	 the	 LM	 algorithm	 is	 dependent	 on	 the	 initial	 conditions,	 and	 it	 does	 not	 always	 converge	
especially	for	the	initial	random	number	due	to	the	fact	that	it	needs	to	evaluate	the	inverse	of	Jacobian	
matrix.	Thus,	the	initial	training	implements	a	two-step	approach,	the	simple	gradient	decent	is	used	as	
the	 first	 step	 to	 obtain	 a	 set	 of	 weight	 parameters	 that	 are	 close	 to	 the	 solutions,	 and	 the	 resulting	
weight	parameters	 from	the	first	step	are	used	as	the	 input	 for	LM	back-propagation	algorithm	in	the	
second	step.	Our	simulation	shows	that	this	approach	enables	the	data	training	to	find	the	best	solution	
very	 quickly.	 In	 the	 retraining	 stage,	 the	 data	 patterns	 are	 known	 for	 a	 given	 data	 set,	 and	 the	 daily	

Figure	2	Two	Hidden	Layer	Forward	Feed	Neural	Network	
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changes	to	state	variables	are	small.	The	gradient	decent	or	its	variation,	such	as	the	adaptive	gradient	
decent[8],	is	more	appropriate	in	the	data	retraining	stage,	which	is	more	efficient.	

	

Figure	3	The	output	of	the	neural	network	data	training	for	the	raw	black	body	datasets	for	detector	1	in	channel	2.	The	blue	
line	is	neural	network	outputs,	and	the	rad	dot	is	the	actual	data	from	a	short-term	data	archive.	The	two	orange	lines	are	
the	upper	and	lower	limit	value	defined	in	Eq.	2.	

4. Application	to	the	GOES	Imager	Calibration	Process	
To	 show	 how	 the	machine	 learning	 system	 for	 data	 trending	 and	monitoring	 works,	 we	 present	 the	
results	for	the	trending	and	data	monitoring	of	the	radiometric	variables	in	GOES	Imager	data	processing	
process.	GOES	Imager	is	a	five	(one	visible	and	four	infrared)	channel	radiometer	designed	to	sense	the	
radiant	 and	 solar	 reflected	 energy	 from	 sampled	 areas	 of	 Earth.	 There	 are	 8	 detectors	 for	 the	 visible	
channel	and	up	 to	2	detectors	 for	each	 infrared	channel.	The	 Imager	data	processing	 in	GOES	ground	
system	 includes	 the	 data	 calibration	 and	 image	 navigation	 and	 registration	 to	 generate	 geo-located	
radiance	images	from	the	raw	instrument	data.	The	radiometric	variables	are	the	intermediate	products	
from	 the	 instrument	 calibration	 process,	 which	 provides	 crucial	 insights	 into	 the	 instrument	
performance	on	the	radiometric	accuracy.	The	main	 inputs	 from	the	 instrument	calibration	process	 in	
infrared	 channels	 are	 the	 spacelook	 data	 used	 as	 the	 calibration	 baseline,	 the	 blackbody	 data	 and	
instrument	 temperatures	 that	 provide	 a	 reference	 correspondence	 between	 the	 raw	 counts	 in	 an	
infrared	channel	and	the	temperature.	The	main	outputs	of	the	instrument	calibration	process	are	the	
bias	 and	 gain	 parameters,	which	 are	 used	 to	 convert	 raw	 image	 pixels	 to	 its	 corresponding	 radiance.	
Both	 inputs	 and	 outputs	 from	 the	 instrument	 calibration	 processes	 are	 trended	 and	 monitored	 by	
engineers	for	possible	signs	of	problems.	

Figure	 3	 shows	 the	 data	 training	 results	 of	 the	 blackbody	 counts	 for	 the	 detector	 1	 in	 the	 infrared	
channel	2.	The	number	the	network	nodes	in	the	first	and	second	hidden	layers	in	Figure	2	are	4	and	2	
respectively.	The	blue	line	represents	the	output	of	neural	networks	from	the	data	training	in	the	initial	
training	phase.	The	 two	orange	 lines	 represents	 the	upper	and	 lower	bound	defined	 in	Eq.	2,	and	 the	
parameter	N	 is	 5	 in	 this	 case.	 The	 training	 datasets	 covers	 2	 days,	 which	 show	 a	 very	 good	 diurnal	
behavior.	Figure	3	shows	the	time	dependent	trend	 𝑓 𝑡 , 𝜎& 	generates	a	much	tighter	bound	defined	
by	 its	 standard	 deviations,	 which	 would	 have	 been	 impossible	 for	 static	 upper	 and	 lower	 limits.	
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Therefore,	 Figure	 3	 provides	 a	 visual	 approach	 to	 the	 data	monitoring	 based	 on	 the	 time	 dependent	
trend	from	the	machine	learning	system.		

	

Figure	4	Initial	training	output	of	the	scan	mirror	temperature	for	GOES	13	Sounder.	The	red	dots	represent	the	data	points	
and	blue	line	is	the	neural	network	output.	

Figure	4	shows	the	data	training	results	of	the	scan	mirror	temperature	for	GOES13	Sounder,	which	 is	
the	 input	used	 in	 the	 instrument	data	calibrations.	The	network	structure	 for	 the	 temperature	data	 is	
the	same	as	that	for	the	blackbody	counts	in	Figure	3.		Both	data	training	results	in	Figures	3	and	4	show	
that	 the	 neural	 network	 provides	 excellent	 descriptions	 in	 both	 non-continuous	 region	 around	 the	
satellite	 midnight	 and	 in	 the	 continuous	 region.	 This	 shows	 how	 versatile	 the	 neural	 network	 is	 for	
datasets	with	different	data	patterns	and	scales.	

	

Figure	5	Output	of	data	retraining	of	bias	parameters	for	detector	1	in	infrared	channel	4.		

The	 time	dependent	 trend	obtained	 from	 the	data	 training	 enables	 the	data	monitoring,	 and	Eq.	 2	 is	
evaluated	 for	 each	 data	 point.	 If	 the	 difference	 𝑓(𝑡#) − 𝑑 𝑡# 	for	 a	 data	 point	 is	 larger	 than	 the	
value𝑁𝜎&,	the	data	point	is	flagged	as	outlier	that	requires	the	engineer’s	attention.	Figure	5	shows	an	
example	of	outlier	for	the	bias	parameter	in	the	infrared	channel	4.	The	value	of	the	data	point	around	
13	 hours	 on	 the	 day	 287	 is	 larger	 than	 the	 data	 bound	 being	 defined	 in	 Eq.	 2,	 which	 could	 not	 be	
detected	with	 static	 limits.	 The	data	 can	be	monitored	during	 the	data	 training	period	 after	 the	 time	
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dependent	 trend	 has	 been	 obtained,	 and	 it	 could	 be	 done	 in	 real-time	 to	 calculate	 the	 difference	
between	the	predicted	value	based	on	the	most	recent	time	dependent	trend	and	the	data	value.	

5. Software	Implementations	
The	machine	 learning	 system	 presented	 in	 this	 paper	 is	 implemented	 in	 Satellite	 Data	 Trending	 and	
Monitoring	 Toolkit	 (SDTMT).	 SDTMT	 is	 developed	 with	 Java	 and	 JavaFx	 technologies,	 which	 can	 be	
installed	on	most	of	Window	and	Linux	platforms.	Figure	6	shows	the	block	diagram	for	SDTMT,	in	which	
the	blocks	in	green	represents	the	core	SDTMT	software.	The	red	blocks	in	Figure	6	are	project	specific,	
which	depends	on	the	specific	data	structure	and	format.	The	functionalities	of	SDTMT	are	implemented	
to	meet	 the	 operational	 needs	 for	 spacecraft	 engineering	 analysis,	which	 include	 data	 trending,	 data	
monitoring,	and	historical	data	plots.	

The	 data	 trending	 and	 monitoring	 blocks	 are	 two	 separate	 processes.	 The	 implementation	 of	 the	
trending	engine	uses	the	component	approach,	
which	 is	 implemented	 as	 a	 component	
container	 that	provides	common	 interfaces	 for	
data	 trending,	 archive,	 and	 retrieval.	 Data	
trending	 algorithms	 are	 implemented	 as	
components	in	the	container.	Both	ATLMA	and	
machine	 learning	 algorithm	 are	 implemented	
trending	in	SDTMT.		

The	operational	 concepts	 for	 SDTMT	have	 two	
operation	 modes,	 which	 are	 the	 production	
mode	 and	 user	 interactive	 modes.	 The	
production	mode	runs	the	data	trending,	which	
generates	 the	 trending	 archive,	 trending	 plots,	
and	outlier	 reports.	The	production	mode	runs	
once	 per	 day,	 and	 the	 outputs	 of	 the	 data	 training	 in	 the	 machine	 learning	 system	 are	 stored	 in	 a	
trending	archive	 for	 the	 long-term	 storage.	 The	
user	interactive	mode	provide	a	GUI	for	users	to	
create	 and	maintain	 the	 SDTMT	 configurations,	
perform	 manual	 data	 training	 or	 retraining,	 runs	 the	 real	 time	 data	 monitoring,	 and	 generates	 the	
historical	 plots.	 The	 trending	 data	 are	 displayed	 as	 the	 data	 plots.	 SDTMT	 implements	 a	 simple	 plot	
template	 called	 page	 used	 as	 plot	 definitions,	 and	 a	 page	 defines	 the	 global	 attributes,	 variable	
definitions	 and	 their	 plot	 attributes.	 Furthermore,	 SDTMT	 provides	 a	 dashboard	 for	 the	 real	 time	
monitoring	of	all	variable	defined	in	the	database.	

Both	 initial	 data	 training	 and	 retraining	 can	 be	 run	 in	 the	 production	 mode.	 The	 trending	 engine	 in	
SDTMT	determines	if	a	dataset	is	in	initial	training	or	retraining	stage	by	searching	the	previous	states	in	
the	 trending	 archive.	 If	 the	 previous	 states	 exist,	 the	 data	 training	 performs	 the	 data	 retraining,	
otherwise,	the	initial	training	is	invoked.	The	training	output	for	datasets	defined	in	the	database	can	be	

Figure	6	Block	Diagram	for	Satellite	Data	Trending	and	
Monitoring	Toolkit	
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examined	through	the	user	interactive	mode,	and	a	GUI	component	for	data	training	has	implemented	
for	 users	 to	 check	 the	 data	 training	 result	 and	 perform	manual	 training	 if	 the	 training	 output	 is	 not	
satisfactory.		

SDTMT	 defines	 a	 database	 schema,	 and	 the	 actual	 trending	 and	 monitoring	 database	 are	 being	
developed	during	the	software	deployment	phase,	which	is	specific	to	an	environment	being	deployed.	
A	SDTMT	database	defines	 the	variable	 in	a	hierarchical	 structure	 for	 trending	and	monitoring,	 and	 it	
also	defines	the	attributes	needed	for	data	training	operation	in	a	machine	learning	system.	For	example,	
the	 network	 structure	 parameter,	 n,	 is	 defined	 in	 the	 database	 for	 a	 specific	 variable	 based	 on	 its	
patterns.	Users	could	adjust	the	parameter,	n,	during	the	software	deployment	phase	to	search	for	the	
network	structure	in	the	initial	training.		

The	SDTMT	defines	a	programming	 interface	that	converts	the	 incoming	data	 into	the	SDTMT	internal	
format	for	trending	and	monitoring.	SDTMT	does	not	make	any	assumption	on	the	format	of	datasets.	
The	 datasets	 that	 can	 be	monitored	 by	 SDTMT	 are	 very	 diverse,	 which	 could	 include	 the	 spacecraft	
health	and	safety	data	that	may	have	CCSDS	standard	format,	the	short	term	trend	from	TCS	and	other	
trending	 system,	 and	 the	 intermediate	 products	 in	 the	 instrument	 data	 processing	 process	 that	may	
have	 special	 proprietary	 format.	 Thus,	 the	 interface	 processing	 is	 generally	 implemented	 during	 the	
system	deployment	phase.	

6. Summary	
The	machine	learning	system	presented	here	is	a	systematic	and	integrated	approach	to	data	trending	
and	monitoring	of	the	time	dependent	datasets.	The	trending	of	a	dataset	is	a	data	training	process	in	
the	machine	 learning,	while	 the	data	monitoring	 is	 to	determine	 if	a	data	point	 is	 consistent	with	 the	
time	 dependent	 trend	 generated	 from	 the	 data	 training	 processes.	 The	 feed-forward	 and	 back-
propagation	 neural	 networks	 with	 two	 hidden	 layers	 are	 implemented	 as	 the	 machine	 learning	
algorithm,	which	have	been	proven	to	be	very	adaptive	to	different	data	patterns.	The	data	training	is	
the	 machine	 learning	 system	 implements	 two	 different	 data	 training	 strategies	 for	 the	 software	
deployment	 and	 normal	 operations.	 The	 data	 training	 strategy	 in	 the	 software	 deployment	 phase	 is	
generally	a	search	process,	while	the	data	training	during	the	normal	operation	uses	the	state	variables	
from	 the	previous	 training	 session	as	 the	 input,	 and	performs	 the	 fine	 tuning	 to	 the	 state	 variable	 to	
capture	the	seasonal	or	long	term	changes	to	dataset.	

The	 machine	 learning	 system	 for	 data	 trending	 and	 monitoring	 provides	 a	 systematic	 approach	 for	
creating	the	situational	awareness	for	a	more	proactive	operations.	It	enables	the	real-time	or	near	real-
time	monitoring	 of	 time	 dependent	 datasets	 that	would	 have	 not	 been	 possible	without	 an	 accurate	
time	dependent	trend.	The	system	presented	here	is	autonomous	and	adaptive.	 It	requires	 little	or	no	
intervention	from	engineers	during	the	normal	operation	phase.	The	seasonal	and	long-term	changes	to	
a	dataset	are	captured	through	the	data	retraining.	Thus,	the	machine	learning	system	presented	here	
presents	a	significant	advance	in	spacecraft	operations.	
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SDTMT	 will	 be	 deployed	 in	 GOES-R	 ground	 system	 for	 trending	 and	 monitoring	 the	 instrument	
calibration	 processes,	 and	 it	 potentially	 has	 wide	 range	 applications	 for	 trending	 and	monitoring	 the	
spacecraft	datasets	as	well	as	the	datasets	in	instrument	data	processing	process.	
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