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ABSTRACT 

As the number of objects in space increase exponentially, the need for Space Situational Awareness (SSA) to 

protect assets from environmental dangers (such as collisions) increases as well. SSA may become a “big data” 

problem due to the prevalence of low-cost small satell ites and proliferation of debris. Additionally, there are 

multiple, uncoordinated, space observation systems collecting data at varying cadences to create datasets that 

grow in proportion to the number of telescopes and other sensors. While these datasets are large, they are not 

persistent or conditioned and are frequently noisy, which makes it challenging to maintain a satell ite’s chain of 

custody and detect out-of-class maneuvers in a timely manner. 

 

Although many SSA operations remain a manual process , Aptima, in partnership with the Air Force Research 

Labs Space Vehicles Directorate (AFRL/RV), has developed automated satell ite maneuver prediction algorithms 

that learn a satell ite’s pattern of l ife (PoL) and predict when and where future maneuvers will  occur. The objective 

is to incorporate spatio-temporal and relational context to identify maneuvers that are inconsistent with expected, 

nominal operations. In turn, this approach enables accurate prediction of future states and the rapid identification 

of deviations from expected behaviors , even in non-persistent environments. 

 

To achieve this, we adapted computationally efficient machine learning algorithms that we originally developed 

for Activity Based Intell igence (ABI) capabilities  in the land, sea and air domains. We have demonstrated high 

accuracy of probabilistically predicting maneuvers of the Galaxy 15 (NORAD ID: 28884) satell ite on noisy, 

intermittent synthetic datasets. Early results indicate accurate prediction of future maneuvers from a short time 

history of past observations  and lay the groundwork for applications in UCT association, dynamic sensor tasking 

and patterns of l ife analysis . 

 

MOTIVATION 

A space operations tradecraft consisting of detect-track-characterize-catalog is insufficient for maintaining 

Space Situational Awareness (SSA) as space becomes increasingly congested and contested.  Space analysts at the 

Joint Space Operations Center (JSpOC) need to know where an object will  be in the future, what its intent is and 

what relationships it has to other Resident Space Objects (RSOs).  Within the Geospatial-Intell igence (GEOINT) 
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community, Activity Based Intell igence (ABI ; Long, 2013) has gained traction for moving away from analyzing 

features (e.g. individual object tracks). Instead, ABI incorporates context to infer the longer-term, wider ranging 

activity that an object is engaged in. While ABI has not been widely adopted by the space community; it is a natural 

fit to address the many of the shared challenges of efficiently processing the variety, veracity and volume of data. 

Accordingly, in the recent Intell igence Community World Wide Threat Assessment, the Director of National 

Intell igence, the Honorable James Clapper, has challenged the space community to look outside the domain to 

seek innovative solutions to SSA (Clapper, 2016).  

 

In this paper, we answer this challenge by applying ABI methodology to a key challenge in SSA: predicting 

where and when a satellite may maneuver.  Drawing from approaches in ABI, we seek to probabilistically 

characterize Patterns of Life (PoL) for the Galaxy 15 Wide Area Augmentation System (WAAS) satell ite.  PoL are 

repeatable, predictable behaviors that an object exhibits within a context and is driven by spatio-temporal, 

relational, environmental and physical constraints.  For instance, a satell ite’s  PoL will  be determined by its physical 

properties, orbital dynamics, time of year, and proximity to other Resident Space Objects (RSO), among other 

Keplerian and non-Keplerian factors. Unexpected dynamic events can be rapidly learned and acted upon once the 

normal behaviors of an object are understood.  While much previous research in PoL has been applied to the land, 

sea and air domains; space is very well  suited to PoL analysis.  PoL in space, perhaps even more than in land and 

sea, are highly normalized based on physics and fuel margins.  While shipping corridors and road networks 

constrain PoL in the maritime and land domains, objects exhibit a higher degree of variability in behavior than 

possible in space.   This is particularly true for satell ites in geo-synchronous orbits (GEO) which maintain a 

narrowly-defined position over earth.   Station-keeping maneuvers become generally predictable as the satell ite 

re-positions itself to account for orbital perturbations caused by non-uniform gravitational pull, radiation pressure 

and atmospheric drag.  Therefore, in this paper, we extend previous PoL research to a satell ite in GEO by adapting 

the land/sea-based data elements and physical models to space.  

 

PROBLEM 

Modern I&W must predict where and when an unanticipated dynamic event, such as a satell ite maneuver, will  

occur with enough advanced notice to execute a course of action. One particular challenge for the tracking 

community are high area-to-mass ratio (HAMR) objects.   HAMR objects tend to be bits of multi -layer insulation 

(MLI) that broke off a parent object and drifted into a new, eccentric orbit due to the influence of Solar Radiation 

Pressure (SRP) (Bradley and Axelrod, 2014). This makes HAMR objects difficult to track and propagate which might 

provide the opportunity to obscure maneuvers of satell ites in close proximity.  

 

Another key challenge in SSA is intermittent coverage of objects that leave “blind” periods during which 

purposeful maneuvers can go undetected. Geographical, geo-political, and ground-based observation resource 

limitations all  contribute to this challenge. Additionally, there are space-based space surveillance (SBSS) 

constellations, which provide greater periods of observance, but they are an expensive resource and often require 

special access to use their data. Therefore, given the limited resources and the potential for unanticipated 

maneuvers, it is possible to have periods when even high value objects are not observed (Abbott and Wallace, 

2007).  

 

Given the challenges of persistent observance, HAMR objects and sheer volume of data, the problem comes 

down to this:  how do we know a satellite may maneuver if we cannot observe it?   We seek to answer this 

question by predicting a satell ites future maneuvers based on its previous ones.  Using only astrometric data in the 

form of Right Ascension and Declination, we establish a satell ite’s  Patterns of Life (PoL) by finding correlations 

between maneuvers and temporal intervals.  Then, using these patterns we can predict the next maneuver and 
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quickly identify when deviations from this pattern happen.  Deviations are not necessarily threats, but they are 

unexpected behaviors which can be flagged for space operators to analyze as an early stage of a threat warning 

and assessment (TWA) system.  

 

APPROACH 

To achieve maneuver prediction, we developed a novel, unsupervised machine learning algorithm, the Interval 

Similarity Model (ISM).  ISM effectively calculates the probability that a satell ite is executing a pattern of 

maneuvers that are similar to historical Patterns of Life (PoL). Inspired by similarity-based clustering (Balcan et al, 

2008), ISM’s output is a probability density function (PDF) detail ing the probability that a maneuver will  occur with 

respect to time. Probability with respect to time is a powerful output as it is easily interpreted but also can be used 

to calculate additional metrics such as the probability that the next maneuver will  happen during any specific time 

interval. Unlike other clustering approaches, ISM is fast and scalable which is critical given the number of RSOs in 

the space catalog. It avoids strict clustering in favor of a probabilistic approach; this lends i t additional speed and 

robustness. Additionally, by taking a similarity based approach, ISM can discern the existence of multiple ongoing 

patterns in a satell ite’s maneuver history. This is critical because PoL tend to be variable in nature due to the 

number of context-driven factors influencing their execution. Also, PoL can be “nested” with a larger PoL consisting 

of smaller, repeating sequences of events which can be considered PoL themselves. For instance, a station-keeping 

PoL might consist of two thrusting patterns of North-South and East-West control.  

 

ISM stands apart from other machine learning approaches 

because it allows for learning of patterns from a relatively short 

time-history of observations.  This is critical because machine 

learning approaches tend to be data hungry, but ISM is able to 

learn a maneuver pattern from as l ittle as a single exemplar.  In 

general, a pattern learned from a single exemplar will  be 

overfit, but due to the ISM’s flexible clustering approach, it 

would be able to discern variations of that pattern to avoid 

being overfit.  Furthermore, as additional observations become 

available, the ISM will  generalize the maneuver pattern with the 

new observations.  Ability to generalize a pattern from single 

example is critical in the space domain, where there are few 

examples of observed complex PoL.   

 

ISM populates an interval similarity matrix that connects 

consecutive intervals strongly or weakly based on the similarity 

between the two intervals. Ultimately this method produces a 

matrix estimating the probability that each interval is l ikely to repeat in the future, and this allows for future 

prediction of maneuvers. Figure 1 shows the similarity matrix for the maneuvers performed by the Galaxy15 

satell ite in 2012. The axes represent the maneuver numbers (there were 75 maneuvers that year). Each box 

represents the relationship between two maneuvers. The color (brightness) is the likelihood that the two 

maneuvers are l inked - that they are both part of one repeating pattern, and therefore the pattern is l ikely to be 

repeated in the future. The columns of the similarity matrix are generated one at a time, one per each maneuver. 

Whenever a new maneuver occurs, it creates a new interval between itself and each maneuver that has occurred 

previously. We are primarily interested in representing how likely it is that that interval will  repeat in the future. An 

interval is l ikely to repeat if it is part of a pattern of repeating intervals, and intervals in a repeating pattern are 

l ikely to be similar. 

 

Figure 1: The Similarity Matrix. Each square 

represents an interval between two 

maneuvers. The brightness of the 

square represents the similarity of that 

interval to the surrounding intervals .  
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Formally, suppose we have labeled maneuvers, i through k, and intervals ij, ik, and jk.  Our approach uses 

Bayesian probability calculation to estimate likelihood that maneuvers are part of a repeating pattern .  Equation 1 

computes the similarity of interval length where σ is the estimated standard deviation of the interval ij duration, 

and where interval ij and interval jk are the durations of those intervals.  This is the “similarity” part of the interval 

similarity model, and is the probability that maneuver k at time t would be observed when the model was given 

that interval ij and interval jk are part of the same pattern.   Next, we take this similarity indicator and fit use it to 

estimate how likely it is that that interval will  repeat in the future. This estimate is a Bayesian calculation which 

includes the similarity between intervals ij and jk, the initial probability that ij would repeat, and adaptive priors.  

 

 (Equation 1)  

 

Once the probability of repeat is estimated for each interval, the next step is to use that information to predict 

when the next interval will  occur. A probability distribution for when the next maneuver will  occur is generated for 

every interval . It is weighted by the interval’s calculated likelihood of repeat.  All  of these predicted and weighted 

probability distributions are combined into one distribution – this is done by further weighting each probability 

distribution by one minus the cumulative distribution of the other interval predictions (since only one predicted 

maneuver can be the next maneuver).  

 

EARLY RESULTS 

ISM was tested using the maneuver times for the Galaxy 15 

(NORAD ID: 28884) geo-synchronous satell ite, during a four-

year period (2011-2015).  The dataset was synthetically 

generated by AFRL and demonstrated realistic levels of 

collection cadence (up to six days without observations of 

object) and noise (up to 90 microradians). This data was 

astrometric only and had four sources, each collecting at a 

different cadence and from a different earth-based location.  

Galaxy 15 was selected for experimentation purposes for three 

reasons.  First, ephemeris data was freely available for use in 

validation.  Second, it demonstrated Patterns of Life (PoL) when 

performing station-keeping maneuvers.  Figure 2 shows PoL in 

the form of the periodicity of the maneuvers from the 

inclination history for Galaxy 15 during 2014 and 2015.  The 

repeated patterns across the two years show the regularity of 

the station-keeping maneuvers.  Finally, Galaxy 15 was selected 

because of anomalous behavior during 2011.  In 2010, Intelsat, 

the operator of Galaxy 15, lost control of the satell ite, and it began to drift away from its orbital slot.  Intelsat 

repositioned Galaxy 15 back to its original location on April  4, 2011  (Weeden, 2011).  Therefore, while the satell ite 

drifted and repositioned, there was a lot of noise in the data and the ephemeris did not capture all  the maneuvers.  

This is a serves as a test case for detecting deviations from the established PoL.   

 

For each year during the four year timespan of the data , ISM was started fresh and learned the on-going patterns 

of the satell ite.  Effectively, this allows for PoL to be dynamically learned and refined. After each maneuver was fed 

 
Figure 2: Galaxy 15 PoL from 2014-2015 

shown as periodicity of the maneuvers 

from the inclination history. 
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to the algorithm, it produced a prediction for the next maneuver that was compared to the actual next maneuver 

time.  We evaluated maneuver prediction using standard metrics  including the log-likelihood – a measure of the 

probability that the maneuvers would occur when they did, given the computed Probabilistic Density Function 

(PDF).  The more accurate the prediction model, the higher value the PDF will  ha ve at the time of maneuver.  This 

average can be calculated using both arithmetic and geometric means – a perfect PDF will  optimize the geometric 

mean. The log of the geometric mean is the ‘average log-l ikelihood’ – a common metric for evaluating probabilistic 

models.   We also computed the Average Integral of PDF Near Maneuver Metric.  For a certain time interval around 

the next maneuver, we want to know the total predicted probability that a maneuver would occur in that interval.  

This metric is similar to the previous metric, but it levels the playing field between very peaky and smoother 

distributions.  For instance, if the time interval is one day’s length, then this metric is saying on average, what was 

the probability that the maneuver would occur on the day that it did.  Multiple time intervals could be used, such 

as daily and hourly.  Figure 3 shows a predicted maneuver for Galaxy 15 in 2012. The left graph shows that there 

was a predicted maneuver (blue) with a high probability on day 209  that coincided with the time of an actual 

maneuver (red) from the ephemeris data.  The right graph shows the corresponding Cumulative Distributive 

Function (CDF), which is the cumulative probability, of the next predicted maneuver. 

 

 
Figure 3:  ISM correctly predicts a maneuver for Galaxy 15 in 2012 with high probability and PDF. 

 

We compared the maneuver prediction performance with a baseline, which assumes that maneuver times are 

generated by a Poisson process using an exponential decay mechanism.  For evaluation, we also computed an add-

on category by accounting for the similarity of phase of orbit in addition to similarity of interval.  Given the oddities 

of Galaxy 15 in 2011, we broke that data apart from other years (2012-2015) and report the results separately.  

Table 1 shows the Galaxy 15 2011 results and Table 2 shows the averaged results across the other years of the 

Galaxy 15 data.  In both set of results, ISM performed much better than the baseline, achievi ng improvements in 

all  metrics. Including the information on orbit phase was able to effectively double the improvement over the 

baseline, which is strong motivation to expand ISM to include other types of information  in future work.   

 

Table 2:   Results on Galaxy 15 from 2011 only.  ISM out performs baseline and adding in orbit phase further   

improves results. Results are lower than those in Table 2 because of irregular PoL in 2011.  
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 Table 3:   Results on Galaxy 15 aggregated over data from 2012-2015.  ISM out performs baseline and adding in  

orbit phase further improves results.  These results show maneuvers were predicted on the correct days and  

with high confidence. 

 

The difference in results between Table 1 and Table 2 demonstrate the importance of establishing PoL in the 

data.  Figure 4 contrasts the regularity of station-keeping maneuvers in 2014 (right graph) with the irregularity of 

recovery maneuvers during 2011 (left graph).  In 2011 there was  a period of very frequent maneuvers (36 

maneuvers in 42 days) which was followed by a long stretch of no maneuvers (0 maneuvers in 41 days).  In 2011, 

the PoL were established on the period of frequent maneuvers so when the behaviors deviated, the accuracy of 

predicted maneuvers went down.  Setting aside evaluation metrics, detecting deviations from the established 

PoL is a critical need for SSA.  Space operators would be interested to know when a maneuver is predicted based 

on historical patterns, but not observed.  In the cas e of Galaxy 15 during 2011, the low accuracy results are a flag 

that the behavior is unexpected as compared to the other years of Galaxy 15.   

 
Figure 4:  Comparison of the Galaxy 15 maneuvers in 2011 (left) and 2014 (right).  201 4 demonstrated   

regular station-keeping maneuvers while 2011 demonstrated irregular slot recovery maneuvers. 

 

CONCLUSIONS 

Maneuver prediction moves beyond the detect-track-characterize tradecraft to an ABI-inspired methodology 

that incorporates spatio-temporal context.  The ultimate goal of our research is to identify and characterize 

unusual behavior of an object and predict future states that are associated with the inferred pattern of l ife (PoL).  

In this paper, we presented the foundation of our vision which currently consists of the probabilistic Maneuver 

Prediction algorithm called the Interval Similarity Model (ISM).  Early results from the ISM model have 

demonstrated that efficient maneuver prediction can be performed on noisy data with intermittent temporal gaps.  

We have demonstrated when there are repeated PoL, such as seen in Galaxy 15 in 2012, the ISM is able to predict 

future maneuvers.   When an object’s  PoL is irregular, as seen in Galaxy 15 in 2011, the ISM is not able to 

accurately predict future maneuvers.  However, it is able to flag deviations from anticipated behavior in order to 

alert space operators for their assessment.  We believe that alone provides value to the Space Protection 

enterprise. 
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The application of this work extends beyond maneuver prediction.  It can be incorporated into data 

association tasks for Uncorrelated Track (UCT) correlation.  It can be used to dynamically task a constellation of 

sensors to decrease observation gaps.  And it can be used for left-of-event prediction of large scale, long term 

patterns of l ife, such as a satell ite end-of-life maneuvers into a disposal orbit.   Future work is planned for 

validation on larger datasets, additional objects and ISM model extensions. 
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